sábado, 20 de marzo de 2010

Electroquimica

Desde el punto de vista Fisicoquímico los conductores más importantes son los del tipo electrolíticos, es decir los electrolitos; estos se distinguen de los conductores electrónicos, como los metales por el hecho de que el paso de una corriente eléctrica va acompañada por el transporte de materia.

Cuando pasa una corriente eléctrica a través de un conductor electrolito, el transporte de materia se manifiesta en las discontinuidades del sistema. Por ej., si en una disolución acuosa diluida en un ácido se sumergen dos alambres, preferentemente de platino, unidos a los 2 polos de una batería voltaica que actúa como fuente de corriente, se desprenden en los alambres burbujas de hidrogeno y oxigeno respectivamente, si la disolución electrolítica contuviera una sal de cobre o plata se liberaría el metal correspondiente en lugar de hidrogeno. Los fenómenos asociados con la electrólisis fueron estudiados por Faraday y la nomenclatura que utilizó y que se emplea todavía fue ideada por Whewell.

Las celdas electroquímicas se usan principalmente con dos fines:

A.Convertir la energía química en eléctrica
B.Convertir la energía eléctrica en química
En las pilas secas comunes y en el acumulador de plomo tenemos convertidores de energía química en eléctrica, mientras que en la carga de la batería de almacenamiento y en la purificación electrolitica del cobre se utiliza la energía eléctrica para realizar una acción química. Una celda es un dispositivo simple de dos electrodos y un electrolito capaz de dar electricidad por la acción química dentro de la celda, o de producir una acción química por el paso de electricidad a su través. Una batería, por otra parte, es una combinación de dos o mas celdas dispuestas en serie o en paralelo. Así el acumulador de plomo es una batería constituidas por tres celdas conectadas en serie.

El método mas común de determinar la diferencia de potencial entre dos puntos cualesquiera en un circuito eléctrico es el de conectar un voltímetro entre aquellos, leyendose directamente el voltaje con el instrumento

2. Ejemplo de cálculos

a) Mediante la ec. De Nernst calcule el potencial de celda para cada par de soluciones
Sea la sgte pila de Daniels:
Zn/Zn+2 (a=1) // Cu+2 (a=1) /Cu
Anodo
Zn à Zn+2 + 2e- E0 = 0,763 v oxidación
Catodo
Cu+2 + 2e- à Cu E0 = 0,337 v reducción
Rx:
Zn (s) + Cu+2 (ac) +2e- ß à Zn+2 (ac) + Cu (s) + 2e- E0=1,1 v

Calculo del potencial de celda
Zn SO4 0,1M con CuSO4 0,1M
Consideremos soluciones diluidas donde los coeficientes de a son iguales a los [ ] de las soluciones a = [M]
aZn+2 = [MZn+2] aCu+2 = [MCu+2] } …..(1)
Ec. de Nernst:
E = E0 - RT Ln aZn+2 ……….(2)
nF aCu+2
(2) en (1)
E = E0 - RT Ln [MZn+2] ……….(2)
nF [MCu+2]

Luego reemplazando datos experimentales:
E = 1,1 - (8,314)(298) Ln 0,1
(2e-)(96486) 0,1
E = 1,1 voltios

Consideremos en el cálculo a los coeficientes de actividad (g )
Sabemos a = g [M] g ZnSO4 = 0,15
g CuSO4= 0,4

Luego:
E = 1,1 - (8,314) (298) Ln (0,15)(0,1)
2e- (96486) (0,4)(0,1)
E = 1,11 v
ZnSO4 0,1M con CuSO4 0,01M

Aplicando Ec. de Nernst:
E = 1,1 - (8,314)(298) Ln 0,1
(2e-)(96486) 0,01
E = 1,0704 voltios

Luego:
E = 1,1 - (8,314) (298) Ln (0,15)(0,1)
2e- (96486) (0,4)(0,01)
E = 1,083 v
ZnSO4 0,1M con CuSO4 0,001M
E = 1,1 - (8,314)(298) Ln 0,1
(2e-)(96486) 0,001
E = 1,041 voltios

Luego:
E = 1,1 - (8,314) (298) Ln (0,15)(0,1)
2e- (96486) (0,4)(0,001)
E = 1,053 v

Porcentaje de errores:
Para ZnSO4 0,1M, CuSO4 0,1M
%E = Vt - Vexp x 100
Vexp
%E = 1,1 - 1,042 x 100 %E = 5,27%
1,1

Para ZnSO4 0,1M, CuSO4 0,01M
%E = 1,0704 - 1,005 x 100 %E = 6,11%
1,0704

Para ZnSO4 0,1M, CuSO4 0,001M
%E = 1,0408 - 0,364 x 100 %E = 65%
1,0408

Utilizando la Ley de Faraday calcule la cantidad en gramos de hidrógeno liberado en el cátodo y compárelo con el obtenido experimentalemente.

Sea: M(gr) = Peq x I x t / 96500
M = masa de sustancia
Peq. = peso equiv. de sustancia
I = amperios
t = tiempo en seg.

Para nuestra experiencia:
t = 9'35'' ó 575 seg.
M = (1gr)(0,3 A)(575 seg) / 96500 = 1,78 x 10-3 A

Según nuestra experiencia se produjo 20 ml. de hidrogeno:
Sabemos:
1 mol H2 ---------- 22,4 l
X ---------- 2,0 x 10-2 l
X = 8,928 x 10-4 moles de H2

Como:
1 mol H2 ---------- 2 gr
8,928 x 10-4 ------ W
W = 1,79 x 10-3 gramos de H2
%Error = 1,78 -1,79 x 100 = 0,56 %
1,78

3. Discusión De Resultados

En el estudio de la ecuación de Nernst al calcular las fem de las soluciones utilizando sus concentraciones (soluciones diluidas) los resultados fueron muy cercanos a los obtenidos en el laboratorio, obteniéndose pequeños márgenes de error para cada par de soluciones, pero se obtuvo un error muy grande en la tercera muestra, esto debido a una mala medición o uso del multimetro, o no poner fijamente los electrodos en su lugar, aun así el error de 65% fue demasiado grande a comparación de los otros dos.

Cuando se conecto el multimetro en serie con cada celda galvánica y se cerro el circuito, el instrumento sufrió una deflexion que indica que la corriente pasa por el circuito, y este paso es una evidencia de que existe una diferencia de potencial entre los electrodos. Los resultados obtenidos al medir las 3 celdas con el multimetro fueron1,042v, 1,005v y 0,364v respectivamente donde se puede apreciar que el potencial decrece, mientras más diluida es la solución. Una seria objeción al uso del multimetro o del voltimetro para la medición exacta de los potenciales de celda (fem), es que este aparato consume alguna corriente, provocando así un cambio en la fem a causa de la formación de productos de reacción en los electrodos, por lo tanto, el potencial medido con este instrumento no será el total de la celda.

Los coeficiente de actividad de las soluciones son mayores que las concentraciones utilizadas en esta practica, para esa razón la diferencia de potencial de los primeros es mayor que la de los segundos.

Los resultados obtenidos en el estudio de la ley de Faraday son aceptables, habiéndose obtenido un 0,13% de error.

No hay comentarios:

Publicar un comentario